With plenty of new material not found in other books, Direct Sum Decompositions of Torsion-Free Finite Rank Groups explores advanced topics in direct sum decompositions of abelian groups and their consequences. The book illustrates a new way of studying these groups while still honoring the rich history of unique direct sum decompositions of groups.

Offering a unified approach to theoretic concepts, this reference covers isomorphism, endomorphism, refinement, the Baer splitting property, Gabriel filters, and endomorphism modules. It shows how to effectively study a group G by considering finitely generated projective right End(G)-modules, the left End(G)-module G, and the ring E(G) = End(G)/N(End(G)). For instance, one of the naturally occurring properties considered is when E(G) is a commutative ring. Modern algebraic number theory provides results concerning the isomorphism of locally isomorphic rtffr groups, finitely faithful S-groups that are J-groups, and each rtffr L-group that is a J-group. The book concludes with useful appendices that contain background material and numerous examples.

**Book year:**
2007

**Book pages:**
344

**ISBN:**
1584887265

**Book language:**
en

**File size:**
1.70 MB

**File type:**
pdf

**Published:**
14 November 2018 - 17:00

13 October 2019 - 16:27