• Welcome!
Total books
Book Detail
Download Think Complexity: Complexity Science and Computational Modeling free book as pdf format

Think Complexity: Complexity Science and Computational Modeling

Expand your Python skills by working with data structures and algorithms in a refreshing context—through an eye-opening exploration of complexity science. Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations. This link for educational purpose only. Please remove file from your computer after familiarization.

Expand your Python skills by working with data structures and algorithms in a refreshing context—through an eye-opening exploration of complexity science. Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations.

You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise.

  • Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tables
  • Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines
  • Get starter code and solutions to help you re-implement and extend original experiments in complexity
  • Explore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topics
  • Examine case studies of complex systems submitted by students and readers

Book year:

Book pages: 228

ISBN: 1449314635

Book language: en

File size: 6.41 MB

File type: pdf

Published: 06 January 2020 - 14:00